::: reklama@pbprog.kz
::: editor@pbprog.kz
::: webmaster@pbprog.kz
«Нобелевку» по физике дали за открытие квантового «транзистора», а по химии — за «домик для молекул»
Нобелевская премия по физике этого года открывает путь к следующему поколению квантовых решений — от квантовой криптографии до квантовых компьютеров и датчиков.
Квантовые явления происходят на масштабах, где почти нет ничего, что можно было бы «пощупать» — нельзя, например, просто взять в руки квантовый транзистор как элемент схемы квантового компьютера. Однако однажды это всё-таки удалось. Около сорока лет назад группа физиков поставила эксперимент, доказавший возможность наблюдать квантовые эффекты на макроуровне. Это открытие заложило основу тех квантовых платформ, которые существуют сегодня.
«Главный вопрос физики — каков максимальный размер системы, которая может демонстрировать квантово-механические эффекты. Лауреаты Нобелевской премии этого года провели эксперименты с электрической схемой, в ходе которых они наблюдали квантовое туннелирование и квантованные уровни энергии в системе, достаточно большой, чтобы её можно было держать в руке», — говорится в пресс-релизе организации.
Законы квантовой механики позволяют частице проходить сквозь энергетический барьер — явление, известное как туннелирование. Оно происходит из-за вероятностной природы квантовых процессов: с некоторой вероятностью частица оказывается за пределами потенциальной ямы, хотя классическая физика запрещала бы ей это сделать. На макроскопическом уровне такие процессы лежат в основе, например, свечения Солнца или тепловыделения в радиоактивных материалах. Но воспроизвести подобное в лаборатории долгое время было крайне сложно — а ведь это необходимо для создания квантовых датчиков, транзисторов и других элементов будущих технологий.
В 1984–1985 годах Кларк, Деворе и Мартинис провели серию экспериментов с электронной схемой из сверхпроводников — материалов, которые проводят ток без сопротивления. Эти компоненты были разделены тонким слоем изолятора, образуя джозефсоновский переход.
После усовершенствования конструкции и точных измерений всех её свойств исследователи смогли управлять процессами в системе и наблюдать квантовые эффекты при прохождении тока. Вся схема вела себя как единая «частица», которую можно было буквально держать в руке, — и при этом она демонстрировала квантовое туннелирование и дискретные уровни энергии, полностью соответствующие теории квантовой механики.
«Транзисторы в современных микрочипах — лишь один из примеров квантовых технологий, которые нас уже окружают. Нобелевская премия по физике этого года открывает путь к следующему поколению квантовых решений — от квантовой криптографии до квантовых компьютеров и датчиков», — заключает комитет.
8 октября 2025 года Шведская королевская академия наук объявила о присуждении Нобелевской премии по химии за 2025 год Сусуми Китагаве (Susumu Kitagawa), Ричарду Робсону (Richard Robson) и Омару Ягхи (Omar M. Yaghi) за открытия в области металл-органических каркасов (MOF). Это почти как домики для молекул — чрезвычайно пористые атомарно-молекулярные конструкции, внутри которых очень много пустого пространства, которое никогда не будет лишним.
Как сообщает CNN, организаторы награждения сравнили открытие металл-органических каркасов с сумочкой Гермионы Грейнджер из цикла романов Джоан Роулинг о Гарри Поттере, на которую было наложено заклинание Невидимого Расширения. Самая первая структура MOF напоминала строение кристаллической решётки алмаза, только в ней атомы соединялись не напрямую, а посредством органических молекул, играющих роль связей между ионами меди (такие связи называются лигандами). Такой «монтаж» далеко раздвинул атомы, образовав обширные полости между ними.
Открытие сделал Ричард Робсон в 1989 году, когда попробовал по-новому использовать присущие атомам свойства. Он соединил положительно заряженные ионы меди с четырёхлучевой молекулой, на конце каждого «луча» которой была химическая группа, притягивающаяся к ионам меди. Когда ионы и молекулы соединились, то образовали упорядоченный, просторный кристалл. Он был похож на алмаз, наполненный бесчисленными полостями.
В 1997 году японский химик Сусуми Китагава из Киотского университета показал, что металл-органические каркасы можно использовать для абсорбции газов — почти как в случае «бесконечной сумочки» Гермионы. Он синтезировал каркас на основе кобальта, на примере которого продемонстрировал поглощение углекислого газа, азота и кислорода. К сегодняшнему дню химики из множества стран создали MOF, способные поглощать полезные и вредные вещества, как для хранения, так и для извлечения из окружающей среды, например, когда дело касается абсорбции токсичных веществ из воды, воздуха или земли.
На поверку каркасы Робсона и Китагавы оказались нестабильными и особенно при нагревании. Это поправил третий лауреат — Омар Ягхи из Калифорнийского университета в Беркли. В 1995 году он синтезировал каркас на основе кобальта, который сохранял структуру при нагревании до 350 °C. Тем самым было доказано, что металл-органические каркасы могут оставаться устойчивыми даже без заполнения пустот атомами или молекулами.
На волне успеха Ягхи синтезировал множество каркасов, включая MOF-5 на основе цинка. Это соединение учёный использовал для хранения водорода. В 2019 году Ягхи провел наглядный эксперимент в пустыне Мохаве: созданный им каркас MOF-303 в расчёте на килограмм своего веса смог впитывать из воздуха до 0,7 литра воды в день.
«Металлоорганические каркасные структуры обладают огромным потенциалом и открывают ранее не существовавшие возможности для создания материалов с новыми функциями», — высказался Хайнер Линке, председатель Нобелевского комитета по химии.
Некоторые из новых каркасов могут способствовать решению ряда из величайших проблем человечества, включая абсорбцию токсичных веществ из воды, поглощение следов фармацевтических препаратов в окружающей среде, улавливание углекислого газа или сбор воды из воздуха пустыни.