Радиоэлектроника и новые технологии
- по вопросам размещения рекламы -

Китайские ученые совершили прорыв в создании надежных квантовых чипов

0 15

Исследователи в Китае продвинулись на шаг ближе к созданию квантового чипа, впервые в мире использовав обычный полупроводник для создания квантового источника света.

Квантовые чипы способны решать сложные проблемы в геометрической прогрессии быстрее, чем традиционные электронные вычисления, но учёным сложно создать компоненты, необходимые для него.
Команда китайских ученых заявляет, что они создали один из этих компонентов – полупроводниковый источник запутанных фотонов – с использованием нитрида галлия (GaN), материала, который десятилетиями использовался в синих светодиодах.

По словам команды из Университета электронных наук и технологий Китая (UESC), Университета Цинхуа и Шанхайского института микросистем и информационных технологий, устройство обладает «замечательным потенциалом» для создания небольших и надежных квантовых чипов.

Запутывание фотонов позволяет защищать передаваемую информацию (квантовое распределение ключей) и выполнять квантовые вычисления или симуляции. И первые, и вторые операции можно выполнять с помощью пар запутанных фотонов. Другое дело, что их запутывание остаётся относительно сложным процессом, требующим особенных источников света, к примеру, на основе нитрида кремния или фосфида индия. Переход на нитрид галлия, хорошо знакомый производителям светодиодов и чипов, позволит шире и мощнее использовать квантовые каналы связи, а также подумать о создании квантовых систем на чипе.

«Мы демонстрируем, что нитрид галлия является хорошей квантовой материальной платформой для фотонной квантовой информации, в которой генерация квантового света имеет решающее значение», — рассказал журналу Physics Magazine ведущий автор Чжоу Цян из UESC.

«Платформа из нитрида галлия открывает многообещающие перспективы для развития фотонных квантовых чипов в ближайшем будущем».

В своем эксперименте Чжоу и его коллеги сначала вырастили тонкую пленку GaN на слое сапфира. Затем они выгравировали на пленке кольцо диаметром 120 микрометров, позволяя частицам света от лазерных лучей перемещаться по кольцу.

Когда исследователи подали инфракрасный лазерный свет на пленку GaN, некоторые из таких частиц стали резонансными парами.

Благодаря эффекту, известному как спонтанное четырехволновое смешение, некоторые резонансные пары породили новую пару уже запутанных друг с другом частиц.

Степень запутанности, создаваемая кольцом GaN, была «сопоставима» с уровнем, измеренным для других квантовых источников света, рассказал Чжоу журналу Physics Magazine.

Диапазон длин волн у GaN-источника света также расширился с 25,6 нанометров у предыдущих традицинных материалов до 100 нанометров у нового устройства.

«Предоставляя больше ресурсов длины волны, мы сможем удовлетворить потребности большего числа пользователей, надеющихся получить доступ к квантовой сети на разных длинах волн», — сказал Чжоу в четверг журналу Science and Technology Daily.

По словам команды, помимо квантового источника света, GaN также является многообещающим материалом для изготовления других компонентов квантовой схемы, включая лазер накачки и детекторы легких частиц.

«Платформа GaN имеет значительные перспективы для создания полностью готовых квантовых фотонных интегральных схем по сравнению с существующими платформами», — сказали они.

Оставить комментарий